
International Journal of Theoretical Physics, Vol. 32, No. 7, 1993 

Condensed Matter Effects on Nuclear Fusion Rates 
in Laboratory and Astrophysical Environments 

Y. E. Kim, ! M. Rabinowitz,  2 and J.-H. Yoon 1 

Received December 18, 1992 

Previously overlooked condensed matter effects (CME) can significantly 
influence nuclear fusion rates in both laboratory and astrophysical environments. 
In dense plasmas, the ensemble of fusing particles has a significant exchange of 
kinetic and potential energies. Thus, there are diminished effective flux velocities 
resulting in a significant selective reduction of fusion rates. Our CME predictions 
are testable in laboratory experiments and have broad-ranging implications on 
the fusion rates for stellar media in general. By calculating reaction rates for 
p(p, e+Ve)D and 7Be(p, 7)8B in the sun, we show that CME help to solve the 
solar neutrino problem. 

1. I N T R O D U C T I O N  

This paper investigates condensed mat ter  effects (CME)  on nuclear 
fusion rates in labora tory  and astrophysical environments.  C M E  described 
in this paper  are new and have not  been included in previous calculations 
of nuclear fusion rates in labora tory  beam experiments, magnetic and iner- 
tial fusion, and stellar fusion. Al though C M E  is negligible for labora tory  
beam experiments at higher energies, it is shown that  C M E  are not  
negligible for low-energy beam experiments and for stellar and solar 
environments.  Our  results imply that  such calculations have to be redone 
with the inclusion of CME.  The possibilities of testing C M E  using a 
low-energy beam in labora tory  fusion experiments are presented. 

In dense solar media, the flux of fusing nuclei is reduced predominant ly  
due to elastic collisions in which the nuclei slow down as they approach  the 
repulsive Cou lomb  barrier. For  inelastic fusion collisions, the reduced 
velocity is properly included in the calculation for the tunneling probability,  
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and hence for the fusion cross section. However, we do not think the flux 
reduction has been properly accounted for even for inelastic collisions. 
Whether or not the flux is properly accounted for in inelastic collisions is 
not a crucial question in our paper, as the number of elastic collisions is 
some tens of orders of magnitud e greater than the number of inelastic fusion 
collisions. Since the preponderance of the collisions do not involve tunneling, 
the flux reduction for most collisions has not been included in previous 
calculations. This effect on fusion rates is appreciable only at the high 
densities encountered in stellar media, and quickly diminishes at ordinary 
densities. The problem may be viewed with cautioned analogy to that of 
molecules in a gravitational potential where in the ideal case an altitude 
increase results only in a number density decrease with the maintenance of 
an isothermal Maxwellian distribution. However our problem is more 
complicated, as thermal equilibrium may not be restored locally when 
kinetic energy is converted to potential energy (cf. Section 5.2). In any case, 
the flux is reduced. 

The fusion cross section a and the flux velocity v are two main inputs 
for estimating the fusion rate (o-v). In our previous work (Kim etal., 
1992a, 1993), we have shown that the extrapolation method using a 
different but more realistic parametrization can give extrapolated values 
which are reduced by < 3 0 %  from the conventional estimate of a(v) 
involved in the fusion rate expression (av)  for the 7Be(p, 7)8B reaction. In 
this paper, we examine the validity of the use of the flux velocity v in the 
conventional fusion rate formula (av)  for the case of a high-density 
medium. [The effective velocity we will introduce is not the customary 
average velocity defined as ~ Iv[ f(v) d3v, where f(v) is given by equation 
(2.1) below.] As we will demonstrate, CME together with our corrections 
to fusion cross sections (Kim et al., 1992a, 1993) can help to resolve the 
missing solar neutrino problem. 

In Section 5, we point out an error in the conventional nuclear 
reaction rate equation for laboratory beam experiments, and present a 
corrected equation (5.2a). This correction is in addition to and independent 
of our condensed matter effects. 

2. VELOCITY DISTRIBUTION IN DENSE PLASMA 

For a (dilute) plasma in thermal equilibrium consisting of several 
species, the velocity distribution for the ith species is given by a Maxwell 
Boltzmann (MB) distribution 

( m; )3j2 (2.1) 
f ( v i )= \27 tkT j  e x p \  2kT J 
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where T is the equilibrium temperature. Even though the processes are 
steady state, the fusing nuclei in the sun may not be in thermodynamic 
equilibrium, and it is possible to have a deviation from the MB distribu- 
tion. However, it has been shown that deviations from the equilibrium MB 
distribution are small for the fusing nuclei from analysis involving solutions 
of the Boltzmann transport equation for the velocity distribution in the 
presence of Coulomb interactions (Bohm and Aller, 1947; MacDonald 
et al., 1957). The same conclusion was also reached by Maxwell in 1866 
(Maxwell, 1866). 

When the plasma density is large as in the solar core, the potential 
energy w~ is no longer negligible and the kinetic energy is reduced from 
mN2i/2 to rn#2i/2 (miu~ + w~= m~v~/2). Then the equilibrium MB distribu- 
tion for ui is given by (Kennard, 1938, pp. 7%90) 

Vexp[-'~ ,'." f(ui) = k--~-- + 

In this paper, both equations (2.1) and (2.2) will be used for the velocity 
distribution. 

3. CONVENTIONAL FORMULAS FOR FUSION RATES 

In the standard solar model (SSM) calculations of the solar neutrino 
flux, and stellar and laboratory fusion calculations, two of the basic inputs 
are the fusion reaction cross sections a(v) and the reaction rates. The fusion 
reaction rate (number of fusion events per unit volume per unit time) 
between two species of nuclei i and j is conventionally written as (Fowler 
et al., 1967) 

ning (av )  . . . .  (3.1) 
R . . . .  = 1 + ~5~j 

where 

~ 0-'/)) . . . .  = f d3~)i f d3vjf(vi)f(yj)vG(I)) 

(3.2) 

with v = v i -  vj, V = (miv i + mjvj)/(m i + mi), and the reduced mass # = 
mlm/'(mi+mj).  When the velocity distribution f(vi) is the MB velocity 
distribution given by equation (2.1) with the normalization S f(v/)d3v = 1, 
then 

f(vi) f(vj) = f (V)  f(v) (3.3) 



1 2 0 0  K i m  e t  al .  

and hence equation (3.2) reduces to the following conventional form: 

<o'v> . . . .  = ~ o-(v) vf(v) d3v 
d 

= ( 8 ~ - ~ l / 2 1 f o o - ( E )  (kT)3/2 (3.4) 

with kinetic energy E =  #v2/2, in the center-of-mass (CM) frame. The low- 
energy cross section o-(E) in equation (3.4) cannot be measured directly in 
the laboratory, due to small reaction rates at low energies (~keV) corre- 
sponding to the solar core temperature (~  1.4 x 10 v K). Therefore theoreti- 
cal estimates and/or extrapolated values for o-(E) are used in equation (3.4) 
to evaluate (o-v> . . . .  at low energies. It is important to emphasize that v in 
(o-v)r is related to the (incident) flux and is to be distinguished from v 
appearing in o-(v) and f ( v )  in equation (3.4), as discussed in Section 4. 

Conventional low-energy (<20 keV) o-(E) are calculated either from 
nuclear theory or by extrapolating the experimental values of o-(E) at 
higher energies using the parametrization (Fowler et al., 1967) 

ex,-t - E 1/2/E 1/2~ o-(E) = [S (E) /E]  v ,  a ,  , (3.5) 

where E a =  (2~Z~Zj) 2 ktC2/2. The "Gamow" factor, exp( - E G1/2/E 1/2) in 
equation (3.5) represents the transmission coefficient for bringing two 
charged particles (Z~ and Zfl to zero separation distance, which is unphysi- 
cal and unrealistic, since it implies that the Coulomb barrier Z~ZjeZ/r also 
exists inside the nuclear surface of radius r N (Kim et al., 1992a, 1993). 

In laboratory beam experiments, the fusion reaction rate (number of 
fusion events per unit area per unit time) is written as 

R b e a m / E  -'~ = n t ~ )  i O- dx = n t l 2 i l )  i - "  co / iv  \ - - l J  , ae IdE'/dx[ dE' (3.6) 

where nt is the target atom number density, ~b~ = n~v~ is the incident beam 
flux (number of incident particles per unit time and per unit area), dE/dx 
is the stopping power for the beam projectile by the target atom (Anderson 
and Ziegler, 1977; Kim et al., 1991), which includes the effect of the energy 
loss due to other inelastic scatterings in addition to the energy-conserving 
elastic scattering characterized by the elastic cross section o-e, and 
Ez=miv~/2  is the incident kinetic energy. Both Ei and E' are in the 
laboratory (LAB) frame, while E is in the CM frame. 
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4. CONDENSED MATTER ENERGY EXCHANGE EFFECT (CMEE) 

In this section, we show that the incident flux characterized by v or vi 
in equations (3.4) and (3.6) needs to  be modified to an average velocity 
~< v at low energies in condensed matter environments, and that CME 
help to solve the solar neutrino problem (Rowley et al., 1987; Davis, 1988; 
Bahcall, 1969; Bahcall and Ulrich, 1988; Turck-Chi~ze et al., 1988; Bahcall 
and Pinsonneault, 1992; Hirata et al., 1989, 1990; Anselmann et al., 1992; 
Kuo and Pantaleone, 1989). This has been neglected in conventional fusion 
rate calculations. If the initial velocity v = v i is specified as that which 
satisfies the Maxwell-Boltzmann velocity distribution or as that of the 
incident projectile, the particle with initial incident velocity vi will undergo 
many (elastic) collisions (characterized by an elastic cross section ae) 
before it fuses with the target nucleus (characterized by a fusion cross 
section, a i ~  ae). 

The elastic cross section ae can be estimated within an order of 
magnitude using a screened Coulomb potential given by 

Vsc(r) : ZiZJe2 e r/a (4.1) 
r 

The total elastic cross section use(E) for Vsc(r) in the Born approximation 
(Schiff, 1968, p. 325) can be written as 

Use(E) = 16~/F(ZiZJ)2 e4a4 (4.2) 
h4(4k2a 2 + 1) 

where hZk2/21~ = E and a is a screening radius. For energies considered in 
this paper, 4kZa 2 >> 1, and hence equation (4.2) can be written accurately as 

e4(ZiZj) 2 
r ) = 4~a 2 h2v2 (4.3) 

where v = hk/#. 
Since the values of V~c(r) at interatomic distance a ~0.2-1.0 ~ are of 

the order of 10eV and are much smaller than E ~ l - 1 0 k e V ,  we 
approximate V~c(r) by a "shifted" screened Coulomb potential Vs(r ) with 
an interior square-well nuclear potential for the purpose of obtaining 
quantitative estimates of CMEE: 

f -- Vo, r<rN 

V~(r)=~ ZiZje2(1-1~'kr r j  r,>r>~rN (4.4) 

1,0, r~>r>~r~ 

Vs(r ) is shown schematically in Fig. 1. 

902,'32 '7 9 
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Vs(r) 
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Fig. 1. Schematic plot of the "shifted" screened Coulomb potential, equation (4.4), used in 
this paper. 

4.1. S ingle-Spec ies  Case  

For a number density of condensed (target) matter n and elastic cross 
section ae, the mean free path can be defined as 

1 
~'e : - -  : re  - -  r2  (4.5) 

HO" e 

and for iT f ,  

1 2eae+ 
~ f =  - -  -{- r 2 = r 2 (4.6) 

na: ~ :  

where r 2 is chosen as the classical distance of closest approach (turning 
point) for a given barrier. The average interatomic distance is "-,2re in 
condensed matter. We note that (re--rs)>>2d for nuclei moving with 
kinetic energy, E >  10 3 eV, where )~d=h/(2mE) 1/2 is the de Broglie wave- 
length, permitting the standard calculation of the tunneling coefficient. 
Then the effective flux velocity (oc effective flux) can be written as 

( v )  = xi 
(t~ + to)(~e/,~:) + t~ + t~ 

( r  e - -  r 2 ) ( G e / a f )  + r 2 
(4.7) 

( t  i "-k t o ) ( C T e / ~ f  ) "-F t B -k  t u 
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where ti, to, tB, and t N a r e  the times for the incident particles to traverse 
distances (r e - r , ) ,  ( r s -  r2), ( r 2 -  r N) ,  and r N, respectively. Using equations 
(4.2) or (4.3), it can be shown that cr~c~>%.. Since a e is of order of asc, 
we have ~ e > a / .  For the case of ae~>@, ( v )  given by equation (4.7) 
reduces to 

re  - -  r2 (re -- rs) + (r~ -- r=) 
( v )  ~ -  - -  (4.8) 

ti + to ti + to 

We will show below that f ~< v, where v is given by 

v = vi = - -  (4.9) 
ti 

We note that our effective velocity <v), equation (4.7) or equation (4.8), 
is not the customary average velocity defined as ~ [v] f(v) d3v. 

The traversal time t ( j )=  to of the incident particle i in equation (4.8) 
in the presence of the barrier due to the target species j can be estimated 
in the WKB approximation for the case of V~(r), equation (4.4), with 
E < B =  Vs(ru) as 

frs(j) ] - -  1 /2  

t(j) - 2(j) [~ij l E -  V~(r)l j -  dr 

= r~(j) L2E'( j ) ]  L E - ~ ]  Lj(E) (4.10) 

where p o  = rnirnj/(m+ + rnj), E( j )  = E, and 

_~Es(j)]l/2Fes(j)]l/2 ~FEt(j)]I/2 _~ E(j) ]1/2] 
L+(E)=I LE-~-~J LE--(7/ ln(l_E---~J L ~ J  ] (4.10a) 

with 

and 

E'( j )  = E( j )  + Es(j) = ZiZje2/r2(j)  (4.10b) 

E~(j) = Z,  Zje2/rs(j) (4.10c) 

Using equation (4.10) in equation (4.8), we obtain for the flux velocity 
reduction factor F(iJ)(E)= ~/v 

F(o.)(E)_ 1 + E~(j) E ' ( j ) / (EeE)  (4.11) 
Lj(E)  + Es(j) E ' ( j ) / (EeE  ) 
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where E = E(j), and E e is defined as 

E e = Z i Z j e 2  (4.12) 
Z 

with 
Z = res = re - rs = re ( j )  - r~(j) (4.13) 

We note that l ime~ o FuJ)(E) = 1, l imE_9 F~~ ~ 1, and F(~)(E) <<. 1. 

4.2. Two-Species Case 

For the case of two species in the target (one species with a number 
density nj participating in fusion reaction with the incident particle i and 
other nonparticipating species with a number density n,), equation (4.8) 
for f can be generalized as 

_pja~(j) r~2(j ) + pkae(k) r,.2(k) + ( P j G e ( j )  4- Pkae(k)) re s 

P j f fe (J )  t ( j )  + p k f f e ( k )  t ( k )  + (Pjae(j) + plcff e (k )  ) t i 

rs2(J ) -POakjra2(k ) + (1 + Oakj ) res 

t(j) + 6akjt(k) + (1 + 6akj) t, 
(4.14) 

where 5 = Pk/Pj, akj = ffe(k)/ae(j), rs2(j) = rs(j) -- r2(j), res = re ( j )  -- rs(j), 
and we assumed re(k) -rs (k)=re , .  Here pj and Pk are collision 
probabilities given by p:. = no/(n o. + nik) and Pk = nik/(nu + nik), respectively, 
with no.=n~nj/(1 +5~) for plasma fusion or with no=nin j for laboratory 
beam fusion. If we assume ae oc asc, the ratio akj= a e ( k ) / f f e ( j )  can  be 
estimated using equation (4.3) as 

ae(k) (akZe]  2 
aks a,(j) \ a j Z j  j fie: (4.15) 

with fl~j = E(k)/E(j)  = #,k/#,:. 
Using equation (4.10) in equation 

velocity reduction factor F(E)= Uv 
(4.14), we obtain for the flux 

F] 'J 'k)(E)= l+6akJ ~ E~-~ + ( l + 6 a k j )  EeE I 

( J )  " "E" 

E �9 t �9 , , 0 )  s (J)] 
: (4.16) 
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where Lj(E), E'( j) ,  and Ee are given by equations (4.10a), (4.10b), and 
(4.12), respectively, and 

E'(k) = E(k) + E~(k) = E +  7kjE~(j) (4.16a) 

with ykj=E,(k)/Es(j) .  It can be easily shown that l i m e ~ B F z ( E ) ~  1, 
l ime~oFx(E)= 1, and Fz(E)~<I. Equation (4.16) reduces to equation 
(4.11) in the limit of Zk--+ 0 corresponding to the case of a single species 
target. The limE~ 0 Fz = 1 is an artifact of our simplified shielding, which 
permits re - r s va O. 

For the case of r~, = 0 and hence ti = 0, equation (4.16) reduces to 

- 

(4.17) 

We note that l i m E ~  Fo(E)~ 1, l ime~ 0 Fo(E ) = 1/2, and Fo(E)~ 1. In the 
following, ~ will be referred to as the flux velocity to distinguish it from v 
appearing in a(v) and f (v )  in equation (3.4). 

5. REVISED FORMULAS FOR FUSION RATES 

In this section, we show that the velocity g given by equation (4.8) or 
(4.14) is the appropriate value to be used in equation (3.4) or equation 
(3.6) rather than v (=vi)  given by equation (4.9) which has been used in 
the conventional equations (3.4) and (3.6). We also present new revised 
fusion rate formulas applicable to laboratory and astrophysical environments. 

5.1. Laboratory Beam Experiments 

If a projectile particle i moves through a condensed matter target, then 
the probability of a fusion reaction per unit path length of the projectile is 
Px=n,a .  Because of the elastic scattering processes described in the 
previous section, the projectile path length per unit time in the target is ~, 
and not v. Hence, the probability of fusion for the projectile path length per 
unit time is P ' =  ~n,a. However, in addition to the reduced velocity ~< v 
due to the (energy-conserving) elastic scattering in the CM frame described 
in the previous section, there is further slowing down of the projectile in the 
target material due to the stopping power by target atoms ]-energy loss of 
the projectile by elastic scattering in the LAB frame (energy transfer) and 
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also by inelastic scattering from target atoms]. Therefore, the effective 
fusion length per unit time is reduced to 

P=f P'ax=.,f  dx (5.1) 
and the new revised fusion rate in terms of the incident flux ~bi= nivi is 
given by 

= niP = n,nivi ~ a(v)ff/v)(v/v3 a b e a m i E .  dx new ~ - - t ]  
d 

=ntqJi fF. ~' ff(E)(v/v)(v/vi) dE' 
, AE [dE'/dx[ 

=ntOi feEi aEa(E) Fz (E)(E'/Ei)I/2 
, IdE'/dx] 

dE' (5.2) 

where E and E' are kinetic energies in the CM and LAB frames, respec- 
tively, i.e., E =  #v2/2, E '= miv2/2, and E i=  miv2/2. The a(v) [or a(E)]  in 
equation (5.2) is still to be evaluated with v instead of ~7, since the cross 
section is defined in terms of the assumed incident flux v and is extracted 
either from experiments or from theoretical calculations using v instead 
of ~. 

5.1.1. Erroneous Interpretation of Laboratory Beam Experiments 

For laboratory beam experiments, the conventional fusion rate expres- 
sion for beam R . . . .  (Ei) given by equation (3.6) has been commonly used by 
experimentalists to extract a(E) from the values of RbeamfF.] obtained from - "cony \~t! 
the experimental measurement. However, even without the inclusion of the 
new condensed matter effects, the conventional fusion rate equation 
Rb~m(E) given by equation (3.6) is incorrect and needs to be modified to 

- -b  . . . .  fEi a(E)(v/vi) 
R . . . .  (Ei)--ntniViJEi--AE ~ dE' 

= ntnivi ~Ei a(E)(E'/Ei)I/2 
"ei ~e ]dE'/dx] 

dE' (5.2a) 

5.1.2. Fusion Cross-Section Parametrization 

We now parametrize a(E) as 

Ss(E) o-(E)= -~ T~(E) (5.3) 



Condensed Matter Effects on Nuclear Fusion Rates 1 2 0 7  

where T~(E) is the transmission coefficient computed for V~(r) given by 
equation (4.4) (Kim etaL, 1992a, 1993). We note that Ts(E ) calculated 
from V~(r) is more realistic and physical than exp(-E1/2/EV2~ used in G / l 

equation (3.5). 
We introduce another parametrization of a(E) with a potential V,~(r) 

without the electron screening consisting of an interior square-well nuclear 
potential and an exterior Coulomb repulsive potential, 

and write a(E) as 

~ - V o ,  

V,, (r'=tZi e2 ' 
r <R=r:v 

r ~ R = r  x 
(5.4) 

g(E) 
a(E) = ~ T.~(E) (5.5) 

where .T,,~(E) is the transmission coefficient with V.~(r), and is nearly the 
same as T~(E) for E>ZiZje2/G (~100eV).  One practical advantage of 
using V,~(r) is that Tns(E) can be expressed in terms of known Coulomb 
wave functions (Blatt and Weisskopf, 1954; Kim et aL, 1992a, 1993). For 
the S-wave scattering cross section, we have 

where 

4soKR 
T.~(E) - Ag + (so + KR)  2 (5.6) 

~ t  ~ ~ t  ~2 So = RE (GoFo- FoGo)/(Go + Pg)] r =  R 

•o = R [ ( 8 o ~ ;  + PoP;)/(8o ~ + v g ) L =  R 

(5.6a) 

(5.6b) 

and h2K2/21~ V o + E with E = h2k2/2#. Here - '  - '  = Fo and G o are derivatives of 
Fo and Go with respect to r, and Fo and Go are the regular and irregular 
Coulomb wave functions normalized asymptotically (r ~ ~ )  as Fo(r) 
sin[kr - r/ln(2kr) + ao] and (~0(r) ~ cos[kr - r/ln(2kr) + ao]. The ao is the 
S-wave Coulomb phase shift, a o = a r g F ( 1  +iq), with the Sommerfeld 
parameter rl=ZiZjeZ/hv. The incoming flux is normalized to unity, 
~ 2  ~ 2  G 0 + F o = l ,  f o r r ~ .  

5.2. Astrophysical Environments 

For dense astrophysical or laboratory plasmas, when a projectile par- 
ticle i moves through the plasma with velocity u = 9, the probability of a 
fusion reaction per unit path length of the projectile is given by Px = nja, 
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where nj is the number of target nuclei per unit volume of the plasma. As 
in the previous case of laboratory beam experiments, the projectile traver- 
sal distance per unit time is u (not v). Then the fusion reaction probability 
for the projectile path length per unit time is P= uPx = unja(u). If the 
plasma through which the projectile moves is isotropic, the probability of 
a fusion reaction is independent of the direction in which the projectile is 
moving. The rate at which ni projectiles per unit volume, each moving with 
a speed u(v) but in random directions, will react is then R(u)= niuP x = 
(niu)(nja(u)). 

Using equation (2.2), the velocity distribution for u is given by 

/ ~ \ 3/2 

f(u)=~2--~kT) exp[  - (#u2/2 + kT W)] (5.7) 

where W= #v2/2- ~u2/2. Since f(u) does not conserve the particle number 
due to S f(u) d3u v~ 1, we replace f(u) by )7(u), 

( 3q 
f(u) =f (u )  \d3u; 

( 12 ~3/2 // __ #/)2~//d 3/3 ~ 
=\- f~-~ j  exp ~ ~ ) ( ~ u )  (5.8) 

with the normalization S f(u) d3u = 1. 
We note that @u2/2) - 3k~/2 is given by 

=- = ? ( u )  d 3 .  

( l f / Z  2 Io  F~Ea/Ze-E/kT = (k~3/2 dE (5.9) 

Since 

(#v2/2) = f (/~v2/2) f(u) d3u = I ('uv2/2) f (v)  d3v = 3kT/2 

we have 

( W )  = (#v2/2)-  (ltu2/2 )= 3kT/2-  3kz/2 

If a projectile velocity distribution f(u) is given, then the new fusion 
rate is given by 

f l in j  (flU)new (5.10) Rnew = 1 + 6 0 



Condensed Matter Effects on Nuclear Fusion Rates 1209 

where 

<O'V )new = f O'(U) b/f (U) d3u 

= j G(u) uf(v) d~v 

: ( 8 ~  1/2 1 fo ~ ( E )  
\---~/ (kT)3/2 o-(E) Fo(E) Eexp  -- ~-~ dE (5.11) 

where E=EF2(E). Justification for using Fo(E) [equation (4.17)] in 
equation (5.11) rather than Fr(E) [equation (4.16)] is given in Section 6.2. 
We note that (o-V)new ~< (O-V) . . . .  �9 

In an almost equivalent option, we can use 

f(u) = (l~/27rk T) 3/2 exp( - r T) 

as the velocity distribution for u instead off (u) ,  equation (5.8), and inter- 
pret e x p [ -  W(u)/kT] in equation (5.7) as a pair correlation function which 
reduces the probability factor (or effectively, number densities) ninj to 
nin j exp[--  W(u)/kT] in the fusion rate, Rne w = [ninj/(1 + 60.)] (~V)new. 
The above interpretation yields a new revised fusion rate (o-V)'ew given by 

<o-~ >'new : f e-W'"'/kTo-(U) Uf(u)d~u=f O'(U) //f(/)) d3b/ (5.12) 

where f(v)=(#/2rckT)3/2exp(-ttv2/kT). The results calculated from 
equation (5.12) agree with those from equation (5.11) within 2% and 
hence only the results of equation (5.11) will be presented in this paper. 

Two additional possibilities are to replace o-(u) by a(v) or o-(u~s) in 
the integrals of equations (5.11) and (5.12), where /~/rms is the root mean 
square flux velocity. We favor a(u) in equations (5.11) and (5.12), since, as 
we explained in the beginning of Section 5.2, the fusion reaction probability 
is proportional to unja(u) involving u rather than v or Urine- 

6. APPLICATIONS AND RESULTS 

We now apply our new CME formulation [equations (4.11), (4.16), 
(4.17), (5.2), and (5.11)] of nuclear fusion rates to specific cases. 

6.1. 7Be(p, T)SB Laboratory Beam Experiment 

For the laboratory beam experiment 7Be(p, ?)SB with :BeX60 target 
(Filippone et at., 1983; Kavanagh et al., 1969), 6 = 1, and the indices i, j, 
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and k in equation (4.16) are identified as p, 7Be, and 160, respectively. 
Using p(YBe160)= 2.77 g/cm 3, we obtain the interatomic distance between 
7Be and 170 as 2.40 ~. We choose rs(j)= 1.05 ~ and rs(k)= 0.60/~ to be 
the neutral atom sizes o f  Be and O, respectively. Then from equation 
(4.10c), Es(j) = 0.055 keV, Es(k) = 0.192 keY, and 7kj = Es(k)/E,(J) ~ 3.50. 
Since res = {2 .40 /~-  [ r , ( j )  + r ,(k)] }/2 = 0.375/~, E e = 0.154 keV from 
equation (4.12). For  Z i =  1, Z j = 4 ,  Z k = 8 ,  aj=ao(Zj) 1/3 (ao is the Bohr 
radius), and ak=ao(Zk) -1/3 (Bohr, 1948), we obtain akj=2.71 from 
equation (4.15). Also flkjg (16/17)/(7/8)~ 1.076. 

Using the above numerical values for the case of 7Be(p, 7)8B with 
a 7Be160 target in the laboratory, equation (4.16) can be written as 
(E in keV) 

1 + 0.78E'(j)/E'(k) + 1.325E'(j)/E 
F(l'7'16)(E) - L i(E) + 0.78[E'(j)/E'(k)] Lk(E) + 1.325E'(j)/E (6.1) 

where E'(j)  = E + 0.055 keV from equation (4.10b) and E'(k) = E + 
0.192keV from equation (4.16a). From equation (4.10a), L j ( E ) = I +  
[ln(Wj + Wj) ]/Wj W i with Wj = [ (E + 0.055)/0.055] 1/2 and Wj= (E/0.055) 1/2, 
and Lk(E ) = 1 + [-ln(W'k + Wk)]/W'k Wk with W~ = [ (E  + 0.192)/0.192] 1/~ 
and Wk = (E/0.192) m. Numerical values of F~l'7'16)(E), equation (6.1), are 
plotted as a function of E in Fig. 2 (solid curve). 

1 . 2 1 _ .  i i [ ] l i l t  I I ~ I I I I I I  i I I I I I I I I  I I I I I I I I 1 [  I I I I I I I I  I I I I l i l , u _  

L 1.0 

- - -  _ 2 

0 . 6  . "  

o . , -  - 

0.2 -- i 
I I ,I i l l l i i  I I I I I I I I I  I I I l l l l l l  I I I I I I I 1 [  J I ~ l l [ l l l  I I l i l l ~ "  

0.01 O" 3 10 ,2 10 1 10 ~ 101 10 2 10 3 

E(keV) 

Flux velocity reduction factors F(E) for 7Be(p,y)SB with a 7Be160 target in a Fig. 2. 
laboratory environment [equation (6.1), solid line] and for 7Be(p, 7)8B in the sun [equation 
(6.3), dashed line], as a function of E=,uv2/2. 
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Since the experimental data (Filippone et al., 1983; Kavanagh et al., 
1969) for 7Be(p, 7)SB are for higher energies (E>100keV) and 

R beam F(l"7'16)(E) ~ 1 for E>~ 100keV, the revised fusion rate --new , equation z 
(5.2), is expected to be nearly the same as that obtained from }beam equa- - - c o n y ,  

tion (5.2a), for E~> 100keV. Therefore, extrapolation of (~(E) to lower 
energies E<100keV can be made using equation (3.5), (5.3), or (5.5) 
without CMEE and F~I'7"6)(E). However, the use of the incorrect form 
Rbeam equation (3.6), in extracting (7(E) from measured fusion rates may 

c o n y  , 

yield underestimates of a(E). It will be difficult to test equation (5.2) with 
the 7Be(p, 7)8B reaction due to low counting rates at low energies, but the 
measurement of the fusion rates for other reactions, such as D(D, p) T with 
intense ion beams or molecular cluster beams (Kim et al., 1991, 1992b, c); 
Beuhler et al., 1990; Bae et al., 1991) may give higher counting rates and 
hence provide quantitative and conclusive tests of the revised fusion rate 

beam Rne W due to CMEE. The recent low-energy data (Vandenbosch et al., 1991) 
for D(D, p)T fusion rates obtained with both ion and deuterated cluster 
beams (which do not have beam contaminant problems) on deuterated 
targets are lower by a factor of ~ 2 than the conventional estimates and 
hence may be consistent with our prediction based on Rbeam equation ~" new , 

(5.2). A new quantitative analysis of their data is in progress. More 
low-energy data for the D(D, p) T reaction as well as other fusion reactions 
with intense ion or (large-size) cluster beams and different target composi- 
tions are needed to test ~beam equation (5.2), conclusively. We note that ~* new , 

the CME are substantially reduced (or negligible) for (dilute) gas targets. 
For the purpose of extrapolating a(E) to low energies from the 

experimental values of aexp(E) at higher energies, we use equation (5.5) 
rather than equation (5.3) for convenience, since both yield similar values 
for a(E) at low energies. The proton transmission coefficient T, , (E) ,  equa- 
tion (5.6), is calculated with V 0 =46 MeV and R = 3.2 fm [(1.25 fm) A 1/3 + 
0.8 fm (proton radius)], using equations (5.6a) and (5.6b). For comparison 
of the calculated values of Tns(E) with T6(E  ) = exp( E1/2/E 1/2~ the ratio 

- -  G / I ,  

TG(E)/Tns(E ) is plotted as a function of E in Fig. 3. The calculated values 
of Tns(E) are then used to extract a new S-factor, S~xp(E), from the 
experimental data (Filippone et aL, 1983; Kavanagh et al., 1969) for 
a~xp(E), 117 < E <  1230 keV, with the parametrization equation (5.5), i.e., 
g~o(E)  = cr~p(E)E/T~(E) .  We use the following expression for S(E): 

S(E) = SNR(E) + SR(E) = Si Ei + ( E  r _ E )  2 + F 2 / 4  
i 

(6.2) 

where SNR(E) is the nonresonant contribution and SR(E) is the contribu- 
tion from the resonance at Er ~ 630 keV (CM). The parameters Si, G, E~, 
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Fig. 3. Ratio of transmission coefficients Tc(E)/Tns(E ) as a function of E. The Tc(E ) is 
calculated with Tc(E ) = exp(-E~/2/E m) and T~,(E) is calculated from equation (5.6). 

and F are determined by fitting S(E), equation (6.2), t o  ,~exp(E). The 
extracted values of the parameters for the case of R = 3.2 fm are Er = 
632.4 keV, F = 38.16 keV, and G = 2.51 keV3-b, So = 0.818 x 10 -3 keV-b, 
$ 1 = 0 . 9 4 0 x  10 - 6  b,  and $2=0.655 X 10 - 9  keV l-b, for the O'exp(E ) 

data of Filippone et al. (1983). For  the aexp(E) of Kavanagh et al. 
(1969), we obtain Er = 631.4 keV, F = 39.26 keV, G = 3.30 keV3-b, So = 
1.08 x 10 -3 keV-b, $1 = 1.30 x 10 - 6  b ,  and $2 = 1.03 x 10 9 keV 1-b. These 
values of the parameters are used to calculate S(E), equation (6.2), and the 
calculated results for S(E) are plotted in Fig. 4. 

In a similar manner,  the use of equation (3.5) yields E r =  632.0 keV, 
F = 38.08 keV, G = 27.70 keV3-b, So = 1.61 x 10 -~ keV-b, S~ = 3.47 x 10 6 b, 
and $ 2 = 1 . 1 7 x  1 0 - g k e V - l - b  for the data of Filippone etal.  (1983). 
For  the data of Kavanagh et al. (1969), we obtain E r =  631.0 keV, F =  
-39.22 keV, G = 36.57 keV3-b, So = 2.13 x 10 2 keV-b, $1 = 5.25 X 10 - 6  b ,  

and $2 = 3.02 x 10-9 keV 1-b. These values of the parameters are used to 
calculate S(E)  in equation (3.5) using equation (6.2), and the calculated 
values of S(E)  are plotted in Fig. 5. 

The resultant S(E)  and also S(E) are used to calculate o-c(E) from 
equation (3.5), and ~,s(E) from (5.5). For comparison, the ratio 
aG(E)/a,s(E ) is plotted as a function of E in Fig. 6 using data of Filippone 
et al. (1983) (solid curve) and Kavanagh et al. (1969) (dashed curve). We 
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note that although TG(E) and SG(E) are very different from T,,s(E ) and 
S(E), respectively, o-G(E ) and a,s(E ) are similar within ~10%, which 
indicates that both equations (3.5) and (5.5) can provide a reasonable 
model-independent procedure for extrapolating o'exp(E> 100 keV) to lower 
energies. 

An important advantage of using equation (5.5) with equation (5.6) 
for proton tunneling is that equations (5.5) and (5.6) for the (p, 7) reaction 
are directly related to the (n, 7) reaction. For the (n, 7) reaction, the 

..s 
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Fig. 4. S-factors calculated from equation (6.2) by fitting the experimental data (open cir- 
cles) of Filippone e t  al. (1983) [lower solid curve, ,~Ng(E); lower dotted line, ~NR(E)+ SR(E)] 
and the data (solid circles) of Kavanagh e t  al. (1969) (upper solid and dashed curves). The 
data of Kavanagh e t  al. (1969) for 140 < E ( C M ) <  3500 keV are used for fitting but are not 
shown for E >  1300 keV. 
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replacement of Fo and Go in equations (5.6), (5.6a), and (5.6b) with the 
spherical Bessel functions Jo and no leads to the appropriate energy 
dependence for the (n, ?) cross section, a(E)~oc S(E) /v ,  at low energies 
(Blatt and Weisskopf, 1952), while the use of the conventional form, 
equation (3.5), cannot provide the direct relationship between (p, 7) and 
(n, 7) reactions. 

Our extrapolation method involves two parameters, Vo ~ 46 MeV and 
rN, but our results for a(E) at low energies are insensitive to Vo, since Vo 
is effectively determined and absorbed in S(E) when S(E) is fitted to the 
experimental data. Our extrapolated o-(E) vary only by ~ 2 % when r N is 

..0 
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Fig. 5. Same as Fig. 4, but S-factors S(E) calculated from equation (3.5). 
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Fig. 6. Ratio of cross sections a6(E)/a,~(E ) as a function of E calculated from the 
experimental data of Filippone etal. (1983) (solid curve) and the data of Kavanagh  etal. 
(1969) (dashed curve), aG(E ) and tT,~(E) are calculated from S(E) and S(E) using equations 
(3.5) and (5.5), respectively. 

changed from r N = (1.25 fro) A 1/3 = 2.39 fm to r N = 3.2 fro. The extracted 
resonance parameters, Er, F, and G, in equation (6.2) are also insensitive 
to variations of T,~(E) due to the above changes in r N. In the following, 
both GG(E ) and a,s(E) will be used for ( a v )  . . . .  and ( a v )  ..... given by 
equations (3.4) and (5.11), respectively, for the case of the 7Be(p, 7)8B 
reaction in the sun. 

6.2. Revised Fusion Rates in the Sun 

For the interior core of the sun (Bahcall and Ulrich, 1988), we 
assume k T ~  1.2keV, p,~ 100g/cm 3, and mass fractions of X(1H)~0.5, 
X(4He) ~ 0.5, and 2"(7Be) ~ 10-11 at a distance of ~ 0.08 solar radius from 
the solar center. Then ~ = ~ ,  X i ( Z  2 + Zi)/A, ~ 1.75 and the Debye-Hiickel 
screening radius (Salpeter, 1954) in equation (4.1) is given by 
a = (kT/4ne2pNA ~)1/2 ,~ 0.25 ~. 

For both 7Be(p, 7)8B and p(p, e+v)D in the sun, the assumption 
res = 0 used in equation (4.17) is justified since both Z~Zje 2 expl - - rs ( j ) /a ] /  
rs(j) and ZiZ~e2exp[-r~(k) /a] /rs(k)  are on the order of ,-~(10-100) eV, 
while kT,~ 1.2 keV. In the following, equation (4.17) will be used for both 
7Be(p, y)SB and p(p, e+v)D reactions in the sun. 
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6.2.1. 7Be(p, ?)SB in the Sun 

For 7Be(p, 7)SB in the sun, we identify i, j, and k in equation (4.17) 
as 7Be, p, and 4He, respectively. Since np=nj=30.11~ -3 and n4Hr 
nk=np/4=7.53/~-3, the average separation distances are np1/3=0.32/~ 
between two protons and (np+n4n~) ~/3=0.30~ between p and 4He. 
Hence r ,( j)=0.32 ~ and r~(k)=0.30 A. The other numerical values are 
akj= 11.64, g =  1/4, flkj=2.91, Es(j)=0.180keV, E~(k)=0.384keV [from 
equation (4.10c)], 7kj= E~(k)/E~(j)= 2.13. Fo(E), equation (4.17), can be 
written as (E in keV) 

F(07,1,4)( /7?] = 1 + 1.36E'(j)/E'(k) 
' - '  L~V)(E)+ 1.36[E'(j)/E'(k)] L~7)(E) 

(6.3) 

where E'( j )=E+O.18OkeV from equation (4.10b) and E ' (k )=  
E + 0.384keV from equation (4.16a). From equation (4.10a), L!7)(E)= 
1 + [-ln(W~7 + WjT)]/W'j7 Wj7 with Wj.7 = [(E + 0.180)/0.180] {/2 and 
Wj7 = (E/O.180) m, and L~7~(E) = 1 + [ln(Wj,7 + Wk7)]/W'kvWk7 with 
Wj, v= [(E+0.384)/0.384] 1/2 and Wk7 = (E/0.384) 1/2. Numerical values of 
F(oT'l'4)(E), equation (6.3), are plotted as a function of E in Fig. 2 (dashed 
curve). 

Both aG(E) [equation (3.5)] and an,(E) [equation (5.5)] with 
F~07'~'4)(E) calculated from equation (6.3) are used to calculate (o r )  . . . .  
and ( a v )  . . . .  given by equations (3.4) and (5.11), respectively. The 
calculated results with E ~/2 117.48 keV 1/2 and kT= 1.2 keV for (ov>co,v G ~-- 
and (av>,r are summarized in Table I. The results in the last three 

Table I. Comparison of Our New Revised Fusion Rates (av>~ew with the 
Conventionally Calculated Rates ( o r )  . . . .  for 7Be(p, 7)8B ~ 

Equation used 
for a(E) (~rv) . . . .  (or)new 

[ref. for S(E)]  (10 -36 cm 3 see -1) (10 -36 cm 3 see 1) < ~rv >,ow/ < ~rv > .... 

(5.5) [ (a ) ]  1.72 0.51 0.30 
(3.5) [ (a ) ]  1.80 0.54 0.30 
(5.5) [ (b ) ]  2.27 0.68 0.30 
(3.5) [ (b ) ]  2.38 0.71 0.30 
(3.5) [-(c)] 2.65 0.79 0.30 
(3.5) [ (d ) ]  2.34 0.70 0.30 
(3.5) [ (e)]  2.49 0.75 0.30 

aHere k T =  1.2 keV. Data  references: (a )Fi l ippone  et al. (1983), ( b ) K a v a n a g h  etal. (1969), 
(c) Bahcall and Ulrich (1988), (d) Turck-Chi6ze etal. (1988), and (e) Bahcall and 
Pinsonneault (1992). 
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rows in Table I are obtained from equation (3.5) using S ( E ) = S o + S I E  
with (So, $1)= (0.0243 keV-b, - 3  x 10 -5 b), (0.021 keV-b, 0.0), and 
(0.0224 keV-b, 0.0), which were used by Bahcall and Ulrich (1988), Turck- 
Chi6ze etal. (1988), and Bahcall and Pinsonneault (1992), respectively. 
As can be seen from Table I, (av)n~w has decreased by a factor of ,-~0.30 
compared with ( av ) . . . .  . 

The average total rates c~ Rve(eXp) of solar neutrino (electron-type, v,,) 
interactions have been measured in a 37C1 detector (Rowley et al., 
1987; Davis, 1988) via the reaction v~+ 37C1~e + 37Ar. The observed 
average values are RC)(3.70 85)= 2.1 ___ 0.3 SNU (Rowley et al., 1987) and 
RC'(3.70-3.88)=2.33_+0.25 SNU (Davis, 1988), and Ra(8.86-3.88)= 
4.2 +0.7 SNU (Davis, 1988) for periods from March 1970 to the end of 
1985, and from March 1970 to March 1988, and from August 1986 
to March 1988 respectively, where a solar neutrino unit (SNU) is 
10 -36 interactions per target atom per second (Bahcall, 1969). Many 
theoretical estimates of R cl based on standard solar models (SSM) 

Ve 

(Bahcall and Ulrich, 1988; Turck-Chi6ze et al., 1988; Bahcall and 
Pinsonneault, 1992) have been carried out and the latest theoretical values 
are Ra(total, TCCD)= 5.8__+ 1.3 SNU (Turck-Chi6ze et al., 1988) and 
RCl(total, BP)=8.0_+3.0SNU (Bahcall and Pinsonneault, 1992). The 
discrepancy between the theoretical values and the experimental data is the 
solar neutrino problem. For the theoretical estimate RCJ(total, BP) 
(Bahcall and Pinsonneault, 1992), major contributions come from five reac- 
tions: p(p  + e - ,  v~)D[RCl(pep) = 0.2 SNU], 7Be(e-, Ye) 7Li cl 7 [R,, (Be)  = 
1.2 SNU], 7Be(p, y) 8Be*(~) 4He [R~(SB) = 6.2 SNU], ~3N(e+v~)13C 

C I  15 [Rye ( N)  0.1 SNU], and 150(e+Ve)lSN cl 15 = [ R y e ( O )  = 0.3 S N U ] . I f w e  
reduce Cl 8 Rue ( B )  = 6.2 SNU by our CMEE reduction factor of 0.30 to 
RCl(SB, CMEE) = 1.9 SNU, then RCl(total, BP) = 8.0 SNU reduces to 
RCl(total, BP + C M E E ) =  3.7 SNU. In similar manner, we find that 
RCl(total, TCCD)= 5.8_+ 1.3 SNU (Turck-Chi6ze etal., 1988) reduces to 
RCl(total, TCCD + CMEE)=  2.9 SNU, which is more consistent with the 
experimental values of Rc1(70.3-85)=2.1 _+ 0.3 SNU (Rowley et al., 1987) 
and RC1(70.3-88.3) = 2.33 + 0.25SNU (Davis, 1988). Most recently, a real- 
time, directional solar-neutrino signal has been observed in the water 
Cherenkov detector, Kamiokande-II (K-II) (Hirata et al., 1989, 1990). The 
reported ratio of the neutrino flux for the period from January 1987 to 
April 1990 is ,~K-H(sR 1.87~.90)/~bssM(SB, BU) = 0.46 + 0.05 (stat.) + 0.06 " r e x p  ~ ~ 

(syst.) relative to the standard solar model estimate (Bahcall and Ulrich, 
1988) of ~bssM(SB, BU) = 5.8 • 10 6 (1 + 0.37) cm -2 sec -1 corresponding to 
~bK-n~sR 1.87-4.90)=2.7• 106 [1 +0.11 (stat.)+0.13 (syst.)] cm-Zsec -~, e x p  ~ ~ - -  - -  

which is much closer to our CMEE estimate of ffcMEE(SB, BP) 
1.74 • 106cm-2sec -~. In a similar manner, the SSM estimate (Turck-Chi~ze 

902 ~32 '7- !0 
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et al., 1988) of q~SsM(SB, T C C D )  = 3.83 x 106 cm -2 sec -1 reduces to our  
estimate of ~bcMEE(aB, T C C D )  = 1.15 x 106 cm -2 sec 1. 

6.2.2. p(p, e+v)D in the Sun 

For  the reaction p(p, e + v ) D  in the sun, indices i,j, and k in equat ion 
(4.17) are identified as p, p, and 4He, respectively, r,(j) = n i t/3 = 0.32 ~ for 
p-p pair separation and rs(k ) =(np + n4He) -1/3 = 0.30 ~ for p -4He  pair  
separation. Zk = 2 and Z i = 1 and hence akj = 6.4. The other values are 
5 = 1/2, flkj ~- 1.60, Es(j) = 0.045 keV, Es(k) = 0.096 keV [ f rom equat ion 
(4.10c)], and ?kj=Es(k)/E,(j)=2.13. In  terms of  these values, equat ion 
(4.17) can be written as (E in keV) 

1 + 3.00E'(j)/E'(k) 
F~~ 1'4)(E) = LJ l )( E) + 3.00[ E' (j)/ E' ( k ) ] L (k~ )( E) (6.4) 

where E'(j)=E+O.O45keV [ f rom equat ion (4.10b)],  E' (k )=E+ 
0.096 keV [f rom equat ion (4.10a)],  LJl)(E)= 1 + [ ln(Wjl  + Wjl)]/Wjl Wjl 
with W i t =  (E/0.045) 1/2 and W } I =  [(E +0.045)/0.045)] 1/2, and L(gl)(E)= 
1 + [ln(W~l + Wkl)]/W'klWkl with Wkl = (E/0.096) 1/2 and W;1 = 
[ ( E  + 0.096)/0.096)] 1/2. The F(01"1'4)(E) given by equat ion (6.4)is plotted as 
a function of E in Fig. 7. 

Fig. 7. 
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For the p(p, e+v)D reaction, the fusion reaction rates are too low 
for determining 0-(E) in laboratory beam experiments even at higher 
energies (approximately several MeV). The parametric values of So = 
4.07 x 10-22 keV-b and $1 = 4.52 x 10-24 b for the Maclaurin series expan- 
sion of S(E) ~ S o + $1E determined from theoretically calculated a(E) and 
equation (3.5) and F(o1'l'4)(E) calculated from equation (6.4) are used for 
SSM and solar neutrino flux calculations (Bahcall and Ulrich, 1988; Turck- 
Chi6ze et al., 1988). o-(E) calculated from equation (3.5) using the above 
values (Bahcall and Ulrich, 1988; Turck-Chi~ze et aL, 1988) of So and $1, 
together with E~2=22.20keW/2 and k T = l . 2 k e V ,  are used for our 
calculations of (av )  . . . .  and (av)  . . . .  from equations (3.4) and (5.11), 
respectively. The calculated results are ( a v )  . . . .  = 1.00 • 10-43 cm 3 sec-1 
and (aV)new -- 0.75 x 10 -43 cm 3 sec 1, so that (aV)new/(aV) . . . .  ----0.75, 
i.e., (av)new is 25% smaller than ( a v )  . . . .  . These results imply thata major 
revision of the conventional theory is needed. 

The recent gallium measurement (Anselmann et al., 1992) of the rate 
of production of 71Ge from 71Ga by solar neutrinos yields R~a(exp)= 
83 4-19 (stat.)_+8 (syst.) SNU (1 sigma) compared with SSM prediction 
and 131.5+271 SNU (Bahcall and Pinsonneault, 1992), of which major 
contributions are from reactions p(p,e+v)D [R~a(pp)=70.8SNU], 
p(p+e ,ve)D ca [Rye (pep)= 3.1SNU], 7Be(e-,v)VLi [R~a(7Be)=35.8 SNU], 
7Be(p ' 7)8B(e+ve)SBe,(~)4He Ca 8 [-R~ ( B ) =  13.8 SNU],  13N(e+Ve)13C 

C a  13 C a  15 [-Rv~ ( N)=3 .0 ] ,  and 150(e+Ve)lSN =4.9 we [-R~ ( O )  SNU]. If reduce 
G a  G a  8 R~ (pp)=70.8 SNU and R~ ( B ) =  13.8 SNU by our CMEE reduction 

RGa" factors (0.75 and 0.30, respectively) to ~, tpp, CMEE)=53.1  SNU and 
R~a(sB, CMEE)=4.14  SNU, then R~a(total, B P ) =  131.5 SNU (Bahcall 
and Pinsonneault, 1992) reduces to R~(tota l ,  C M E E ) =  104.4 SNU. In a 

RCl,t �9 �9 similar manner, ~ t otto, TCCD) = 125 + SNU (Turck-Chi~ze et al., 1988) 
reduces to RC~(total, TCCD + CMEE) = 99.6 SNU. These CMEE estimates 
are consistent with the recent result of the GALLEX experiment (Anselmann 
et al., 1992), R~a(exp)= 83 + 19 (stat.)-4-8 (syst.) SNU (1 sigma). 

7. C O N D E N S E D  MATTER I N T E R F E R E N C E  
(SHADOWING) EFFECT (CMIE) 

We now consider another previously neglected flux reduction at high 
densities for nuclear fusion rates due to condensed matter interference (or 
shadowing) resulting from the presence of the non-fusing spectator species. 
This CMIE can be characterized by a set of dimensionless parameters 
gj and gk defined as gj= Vjnj= 4rj/32j and gk = Vknk = 4rk/32k where V i 
and Vk are the effective interaction volumes defined as Vj = (4~/3)r 3 = 
[4/(3 ~/-~)] a 3/2 and V k = (4~/3) r 3 - [4/(3 x/~)]  ~3/2. The effective interac- 
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tion radii rj and r k are for the elastic collision cross-sections, aj and o'k, and 
are related to them as aj = nr~ and cr k = ~r 2, respectively. Using equation 
(4.3) we obtain ak/aj= ( Z ~ / Z y  (#ik/l~o) and gk/gj= (ak/aj) 3/2 (nk/nj). We 
note that g~(~ 103) ~> 1, and g j ( ~  102-103) ~> 1 for a dense plasma in the 
solar core where j is p and k is 4He. 

For a low-density plasma (g j~  1 and gk~  1), the probability, Pj(x), 
that i does not make an elastic collision with j in a distance x, is given by 
Pj(x) = e -'j~jx, and the number of surviving i particles at the distance x 
without making collisions with j is given by Ij(x) = I(O) Pj(x) = I(0) e --'j~jx 
where I(0) is the initial number of i at x = 0 .  Hence, the number of i 
particles making collisions with j in the distance x is given by ~ ( x ) =  
I(0)[1 - Pj(x)] = I(0)(1 - e-'J~Jx). The frequency f j  of the elastic collision 
of i with j per incident particle is then 

1 
f J - I j ( x )  dt njajv (7.1) 

where v = dx/dt is the velocity of i. The presence of (nonfusing) k species 
in the low-density plasma does not affect the collision frequencyfj given by 
equation (7.1) significantly as long as gk ~ 1, since i will encounter the same 
distribution o f j  (specified by n j) after each elastic collision with (nonfusing) 
k species, if gk ~ 1. 

However, for a dense plasma (g j>  1 and gk>  1) such as in the solar 
core, the probability of continuous (sequential) multiple elastic collisions of 
i between two adjacent k species increases and becomes non-negligible as 
gk increases. Therefore, the collision frequency fj  given by equation (7.1) is 
expected to be reduced to 

= njaj~ = njajvF (7.2) 

where ~ = vF is the reduced effective (flux) velocity. F is the flux reduction 
factor given by 

F = ~ _  g~ + gigk (7.3) 
f j--g2 + gjgk + g~ 

where g~, gj gk, and g2 represent quantities which are proportional to the 
probabilities for multiple elastic collisions of i between two adjacent j 
species (j  ~ i ~ j), between adjacent j and k species (j  ~ i ~ k), and 
between two adjacent k species (k ~ i ~  k), respectively. We note that in 
the limit of gk~  1 and gk~gj,  F ~  1, corresponding to the conventional 
low-density case. The new fusion rate modified by interference is given by 
equation (3.1) with ( a v )  . . . .  replaced by (av)~w where (aV)~ew= 
F(av)  . . . .  �9 
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For both cases ofp(p, e+ve)D and 71Be(p, 7)SB reactions in the solar 
core, indices j and k are identified as p and 4He, respectively, and we get 
(aJ~rfi = 6.4, (gk /g i )= 4.05, and hence F =  0.235. The use of F =  0.235 for 
the 7Be(p, 7)8B reaction leads to our reduced CMIE results of 3.3 SNU 
(instead of BP (Bahcall and Pinsonneault, 1992) result of 8.0 SNU) and 
2.7 SNU (instead of TCCD (Turck-Chi6ze et al., 1988) result of 5.8 SNU), 
compared with 37C1 detector results of 2.1_+0.3 SNU (3.70-85) (Rowley 
etaL, 1987), 2.33 +0.25 SNU (3.70-3.88), and 4.2_+0.7 SNU (8.86-3.88) 
(Davis, 1988). Our new results calculated with CMIE are substantial 
improvements over the previous SSM calculations of BP, and TCCD, and 
are much closer to the experimental data (Rowley etal., 1987; Davis, 
1988). 

For the neutrino flux ~b(SB) from 7Be(p, 7)8B reaction measured by 
the Kamiokande detector (Hirata etal., 1989, 1990), we obtain with 
F =  0.235 the calculated values of 1.34 x 106 c m  - 2  s - 1  (instead of BP result 
of 5.7 • 106 cm -2 s 1), 0.90 x 10 6 cm -2 S - 1 ,  (instead of TCCD result of 
3.83x 1 0 6 c m - 2 s - 1 ) ,  compared with the experimental value of (0.46+ 
0.05 _+ 0.06) x (5.7 x 10 6 c m  - 2  s - 1 )  = 2.7 • 106 • (1 __. 0.11 _ 0.13) cm -2 s -1 
(Hirata et.al., 1989, 1990). Our new results obtained with CMIE are much 
closer to the experimental data (Hirata et al., 1989, 1990). 

For the 71Ga detector result, we obtain, with F=0.235 for both 
p(p,  e+ve)D and 7Be(p, 7)8B reactions, the calculated results of 66.7 SNU 
(instead of BP result of 135.1 SNU) and 62.9 SNU (instead of TCCD result 
of 124.0 SNU), as compared with the GALLEX data (Anselmann et al., 
1992) of (83 + 19 _+ 8) SNU. Our CMIE results are in agreement with the 
GALLEX data (Anselmann et al., 1992), and the SAGE data (Abazov 
etal., 1991; Garvin etal., 1992) of ~+17~_ ~ - 2 4  '--14 (syst.) SNU. 

8. SUMMARY AND CONCLUSIONS 

We have investigated previously neglected condensed matter effects 
(CME) on nuclear fusion rates in laboratory and astrophysical environ- 
ments. We have shown that CME is negligible for nuclear fusion rates at 
higher energies and/or in a low-density plasma, but is significant at lower 
energies (E< 20 keV) in condensed matter. These CME together with our 
previously proposed corrections to fusion cross sections (Kim et al., 1992a, 
1993) can help to solve the solar neutrino problem. 

Our calculations with CME show substantially larger fusion rate 
reductions for 7Be(p, ~)SB than for p(p,  e+v)D. Our results are in good 
agreement with experiment, compared with conventional fusion rate 
estimates. 
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Our conclusion has profound implications in astrophysics, since 
previous stellar and solar (structure and evolution) model calculations 
have to be redone with revised nuclear fusion rates including CME. The 
new results are expected to be significantly different from previous results 
of the conventional stellar and solar model calculations. It will also change 
conventional estimates for the solar neutrino flux. There are also implica- 
tions for magnetic and inertial confinement fusion, since decreased nuclear 
fusion rates due to CME will require higher values of k T  than conventional 
estimates for achieving ignition and breakeven. Additional CME are 
related to reduced volume effects which have analogs in liquids and inside 
nuclei and which may also be operative in unexpected ways. 

CME predictions of nuclear fusion rates can more easily be tested in 
laboratory beam experiments using intense ion beams or large-size cluster 
beams (in which there are no light-ion contamination problems), which 
can increase the low-energy incident flux substantially as demonstrated in 
previous heavy-water molecular cluster beam experiments for D(D, p)T 
reaction (Beuhler et al., 1990; Bae et al., 1991). There exist already 
published D(D, p)T dala (Vandenbosch et al., 1991) with both ion beams 
and small cluster beams (in which there were no light-ion contaminant 
problems) that may be consistent with CME. However, additional 
D(D, p)T experiments are needed using high-flux beams and different 
deuterated target compositions in order to test CME on nuclear fusion 
rates quantitatively. Because of the profound and important implications of 
CME in stellar and solar fusion and in magnetic and inertial confinement 
fusion, it is very important to carry out such experimental tests of CME on 
nuclear fusion rates using high-flux ion beams on a variety of targets 
containing different nuclear species. 
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